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Abstract
This article describes our experiments during participation
in the Legal Track of the 2011 Text Retrieval Conference.
We incorporated machine learning, via selective query ex-
pansion, into our existing EDLSI system. We also were able
to expand the number of dimensions used within our EDLSI
system.

Our results show that EDLSI is an effective technique
for E-Discovery. We also have shown that selective query
expansion can be a useful mechanism for improving retrieval
results when a specific initial query is provided. We believe
that queries that are stated in general terms, however, may
suffer from ”expansion in the wrong direction” when certain
iterative approaches to incorporating relevance feedback
information are incorporated into the search process.

1 Introduction

Legal professionals are often presented with mas-
sive document sets that are potentially relevant to a
case at hand. Any document can be used as important
evidence at trial, but these datasets are generally too
large to analyze manually. E-discovery refers to the use
of electronic search engines to assist with, or automate,
the legal discovery process. Finding an effective and ef-
ficient search algorithm for E-discovery is an interesting
open problem.

The Text REtrieval Conference (TREC) is an an-
nual conference started in 1992 to support research in
the information retrieval community. It focuses on test-
ing retrieval methods on large-scale datasets which are
interest to researchers from industry, academia, and the
government. The conference is split into multiple tracks
(Medical, microblog, etc.) in order to facilitate more
focused research. With a wide range of potential par-
ticipants in mind, TREC instituted a variety of tracks
(Medical, microblog, etc.) in order to facilitate more
focused research.

To provide a framework for studying this problem,
the TREC Legal Track was created. This track at-
tempts to emulate E-Discovery, including the use of real
legal datasets and attorneys. Each system is designed to
retrieve documents that are relevant to a specific request
for information (in 2011, there were 3 topics). This
simulation includes an opportunity for machine learning
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based on relevance feedback. Teams implement machine
learning systems to improve search results over multi-
ple iterations by consulting with a Topic Authority (TA)
about the relevancy of sets of documents compiled by
the teams during the previous iteration. The TA is a le-
gal expert who can answer questions about a particular
topic.

This paper describes the results produced by the
Ursinus team during the 2011 competition. The system
we implemented for both 2010 and 2011 is based on
Latent Semantic Indexing (LSI), a search method that
attempts to draw out the meaning of terms. In par-
ticular, we implemented Essential Dimensions of LSI
(EDLSI), which combines standard Vector Space re-
trieval with LSI in a ”best of both worlds” approach. In
2011, teams were allowed multiple submissions for each
query (”runs”); after each run they received relevance
judgments for a number of documents. This procedure
lends itself intuitively to selective query expansion. In
selective query expansion, we modify the query using
information from documents that are known to be rel-
evant in order to train the system to produce better
retrieval results. We implemented selective query ex-
pansion as a machine learning feature in our system.

Results from the 2011 competition suggest that
EDLSI with selective query expansion is competitive
with other methods in large-scale E-Discovery applica-
tions. The official comparison metric is estimated F1.
Our system was consistently near the median when com-
pared to all teams participating on a given topic. Our
learning method experienced diminishing returns, how-
ever, and our system was clearly better for one topic
than for the other two. We believe this was due to
query characteristics that move queries away from rele-
vant documents in the query expansion cycle.

2 Background/Related Work

In this section we describe the basic algorithms used in
our system.

2.1 Vector-Space Retrieval In Standard Vector
Space Retrieval, documents are represented as vectors
of dimension m x 1, where m is the count of terms in the
dataset and position [i, 1] of each vector represents how
many times term i appears in the document. Queries



Figure 1: Full SVD of termdoc matrix X (T = U ,
D = V ) [2]

Figure 2: SVD reduced to k dimensions [2]

are represented in the same way (vectors of termcounts),
and it is assumed that documents with vectors closer to
the query vector are more relevant to the query. One
limitation of standard vector space retrieval is that if
none of the query terms appear in a document, that
document will not be returned as relevant. This can be
counterintuitive when you are searching (for example)
for car, and there exist documents in the dataset
that are about automobile, but which never explicitly
contain the term car. This problem is called synonymy.
Another common problem is polysemy (words having
multiple meanings, i.e. ”plant” referring to either a
green thing with leaves or some sort of factory). If
the majority of the documents in a dataset mentioning
plant also mention roots, leaves, stems, etc., searching
for ”plant” will return the documents about the green
life forms as more relevant than those primarily about
production facilities. In the next section, we describe
Latent Semantic Indexing (LSI). LSI has been shown to
use second-order and higher-order word co-occurrence
to overcome the synonymy and polysemy problems in
some corpora [5].

2.2 Latent Semantic Indexing LSI is an exten-
sion of the Vector Space search model. It is designed
to extract the ”meaning” of words by using their co-
occurrences with other words that appear in the docu-
ments of a corpus [2]. Latent Semantic Indexing uses

the term-document matrix of a dataset, i.e. the matrix
that contains a dataset’s terms in its rows and docu-
ments in its columns, with position [i, j] representing
how many times term i appears in document j.

LSI got its name from its ability to draw out the
”latent semantics” in a dataset. That is to say, infor-
mation about what a term might mean with respect to
other terms that appear often in the same documents.
This is accomplished by computing the Singular Value
Decomposition (SVD) of the term-document matrix.
The SVD is a matrix factorization method that splits
a matrix, A, into 3 separate matrices U , S, and V where:

A = U ∗ S ∗ V T

The eigenvalues of ATA are computed, and the
square roots are computed to obtain the singular values
of A. These values are then arranged in descending
order on the diagonal of S. U and V are then computed
accordingly. In LSI, U is known as the term matrix, and
V is known as the document matrix.

Factoring the matrix into this format is not suffi-
cient, because no information has been gained. Multi-
plying the matrices back together produces the original
term-document matrix. The power of LSI comes from
truncating the U , S, and V matrices to k dimensions
(See Fig. 2).

Multiplying UkSkV
T
k produces the best rank-k ap-

proximation of the original term-document matrix [4].
This recalculated matrix Ak is very dense whereas A is
very sparse, which poses problems in actual computa-
tion, but conceptually is where the power of LSI comes
through: Ak contains all the information regarding the
higher-order relationships between terms in the dataset
[5]. In practice, fast algorithms are used to compute the
partial SVD to k dimensions (rather than decomposing
the entire matrix and truncating) [3].

2.3 Running Queries In both LSI and vector space
retrieval, documents in the dataset are represented
as vectors, with each vector position representing
the weight for each term in the corpus. Queries are
represented in the same way. To ”run” a query, each
document vector is compared to the query vector. The
most common metric for comparison is cosine similarity,
where the cosine of the angle between each document
vector and the query vector is computed. The result of
this calculation is referred to as the document weight
or the relevance to the query. The documents with
cosine similarities near one are very close to the query
vector, and are assumed to be more relevant to the
query. In LSI, we have to first transform the query
vector into the same space as the document vectors



before we can compute the cosine. Each document
vector is taken from a column of V T , and the equation
for transforming the query vector is:

qk = qTUkS
−1
k

Each document vector then has its cosine simi-
larity to the query vector calculated, and that result
is recorded as the final relevance score for the docu-
ment/query pair [1].

2.3.1 Essential Dimensions of LSI (EDLSI) One
of the disadvantages of LSI is that k (how far we cal-
culate the dimensions of the SVD matrices) must be
large enough to contain enough information to accu-
rately represent the dataset we are using. It has been
shown that if only a few dimensions of the SVD are
computed, they contain the most important data that
the LSI extracts from the dataset, but not enough to
accurately run searches [4]. These ”Essential Dimen-
sions of LSI” can still be used, however, in conjunction
with the original term-document matrix. We can use
the LSI scores on documents to try and draw out the
latent semantics in a dataset, while also using the raw
power of vector-space retrieval, by simply adding to-
gether the results from LSI and the results from vector-
space. Weights are applied to balance the contributions
from each source. The final relevance score, w, for a
document, d, is computed as:

wEDLSI = (1 − x)wLSI + (x)wvector

where wLSI is the relevance score from traditional LSI,
wvector is the relevance score from traditional vector
space retrieval, and x is a weighting factor (0 ≤ x ≤ 1).

3 Methodology for TREC Legal 2011

The primary objective of the TREC Legal Track in 2011
was to use of machine learning to improve retrieval.
Teams attempted to implement information retrieval
systems that are able to learn when relevance feedback
is available. For each query, we were allowed to submit
subsets of the dataset for relevance judgment to a TA.
When those judgments were returned, teams updated
their systems using that information in an attempt to
improve future queries. For 2010, we created a system
that could use LSI methods on the competition dataset.
We developed a system to parse the data, create a term-
document matrix, take the SVD, and run the queries. In
2011 we improved our base system by implementing the
R package, irlba, to increase the number of dimensions
we could obtain with LSI, and by implementing a new
method of machine learning, selective query expansion.

3.1 Preprocessing In 2009, 2010, and 2011, the
TREC Legal Track used the Enron email dataset. The
Enron email dataset contains 685,592 documents in
many formats (including .txt, .pst, .ppt, etc.) that
take up 3.71 gigabytes of disk space. We removed all
documents that fit any of the following criteria:

− Were not in .txt format

− Contained no text other than the information uni-
versal to all documents (disclaimers, etc.)

− Contained only junk terms, including:

• terms longer than 17 characters

• terms with characters not from the English
alphabet

• terms with 3 or more of the same character in
a row

• terms that appeared in greater than 100,000
documents

After culling documents and terms, we were left
with 456,968 documents and 302,119 unique terms.
Each document was then added to a Lemur index (an
efficient way of storing large amounts of data for fast
retrieval) in order to create the term-document matrix
for the dataset. The Lemur Toolkit is designed to take
a set of documents and add them quickly to an index
[6].

3.2 Calculating the Term Document Matrix
The main challenge in creating the term-document
matrix is working with limited storage space. When the
Enron email dataset is trimmed of useless terms and
documents, there are 456,968 documents and 302,119
terms. In order to store a dense matrix of that size in
memory, we would need just over one terabyte.

This exceeds the memory available on our research
systems. However, because most terms appear in few
documents, the matrix will be very sparse. In sparse
matrix format, the term-document size for the TREC
dataset is 30,252,865 nonzeroes, requiring to 0.2254
gigabytes of storage space, a much more manageable
size. The Lemur toolkit also applied the term-weighting
scheme while it creates the term-document matrix.

3.3 Tf-idf Term Weighting Term weighting can
improve search results dramatically. We chose the tf-
idf term weighting scheme. The score of a term in a
document (what goes into position [i, j] of the term-
document matrix, where i is the term number and j is
the document number) is computed as:



clickpaper dealbench energydesk enromarkt
enroncredit enrondirect enrononline enronweather

epoweronline hottap newpowercompany water2water

Table 1: Initial Query Terms for Topic 401

capital commission commodities congress crude derivatives djia
dow dowjones exchange federal financial foreign ftc

funds futures gold growth illegal international invest
investment investments jones law laws legal london

markets metals mutual nasdaq nyse Oil options
parliament poors precious products regulation regulations reserve

rules shanghai silver standard stock stocks tokyo

Table 2: Initial Query Terms for Topic 402

environment environment environmental oil
spill emissions emission footprint

warming legal illegal

Table 3: Initial Query Terms for Topic 403

score = tf x idf

tf =
D[i,j]

TCj

idf = log(DC
Ti

)

where D[i,j] is the number of times term i appears in
document j, TCj is the total count of terms in document
j, DC is the total count of documents, and Ti is number
of documents containing term i.

Term frequency (tf) measures the local importance
of a term within a particular document. Inverse docu-
ment frequency (idf) measures the discriminatory power
of the term within the entire corpus.

3.4 Computing the SVD In 2010, we used the
SVDLIB toolset [7] to compute the partial SVD of the
termdoc matrix to k dimensions. The ideal values for k
varies among datasets, and there is no way to determine
the optimal value except by experimentation. It is safe
to assume, however, that 75 singular values for a matrix
the size of the TREC termdoc is too small; in 2010, we
were unable to calculate more than 75 dimensions due
to memory restrictions on our research machines.

A package called ”irlba” for the R language was re-
cently released [9]. It is designed to allow for further
calculation of the partial SVD on massive matrices. We

used this library to calculate the SVD of the ENRON
corpus to 200 dimensions. Though we never tested ex-
clusively for improvements due to dimensionality expan-
sion, we believe this boosted the performance of the LSI
component of our system.

3.5 Run Submission No relevance information is
available until after the first run; therefore, at least one
blind run had to be used. For this run we developed
queries based on the request for information. These
initial queries are shown in Tables 1, 2, and 3. We used
EDLSI with weighting parameter of x = .2 (as outlined
in 3.2) to run these queries. Previous work has shown
that a weighting factor of .2 is optimal for a variety of
collections [4].

The documents with the top 100 relevance scores
from the blind run were sent to the TA for relevance
determination. When the judgments for these 100
documents were returned by the TA, we modified our
query based on this new information. We refer to this
process as selective query expansion, because we are
expanding the query with terms from documents we
have selected specifically because they are known to
be relevant. It is reasonable to assume that we can
use these known-relevant documents as query vectors to
return other documents that are similar, and hopefully
relevant to the query. We implemented selective query
expansion by taking the known-relevant documents,



Run Actual F1 Hypothetical F1 Est. Docs Relevant
Initial Run 16.8% 34.3% 2393

Run 2 17.3% 25.7% 5495
Mopup Run 42.7% 44.6% 18251

Table 4: Actual F1, Hypothetical F1, and Est. Docs Relevant for Topic 401 for all Runs

Run Actual F1 Hypothetical F1 Est. Docs Relevant
Initial Run 3.6% 8.6% 5866

Run 2 3.8% 8.5% 7592
Mopup Run 6.8% 15.8% 11523

Table 5: Actual F1, Hypothetical F1, and Est. Docs Relevant for Topic 402 for all Runs

Run Actual F1 Hypothetical F1 Est. Docs Relevant
Initial Run 3.3% 8.3% 3420

Run 2 1.2% 8.2% 9000
Run 3 4.8% 10.3% 10099

Mopup Run 4.3% 23.9% 13369

Table 6: Actual F1, Hypothetical F1, and Est. Docs Relevant for Topic 403 for all Runs

adding their vectors to the previous query vector, and
using this new vector as the query vector in a new
EDLSI run.

We had time to repeat this process multiple times
before a final submission was required. In each iteration,
we submitted an additional 100 non-judged documents
to the TA and used the judgment information to expand
our queries.

3.6 TREC Submission Details Our runs were all
produced by our EDLSI system. All submissions used
a k of 200 and an x of 0.2. The first submission
for each topic was an EDLSI search with no machine-
learning implemented. The query vectors we used were
lists of terms we believed would be commonly found
in relevant documents, and were drawn from terms
we saw in the request for information or in related
literature. The subsequent submission for each topic
used the same EDLSI parameters along with selective
query expansion. The documents we used for query
expansion were all documents judged to be relevant by
the TA. In each iteration, we sent the top 100 unjudged
documents returned in the previous search to the TA.
Documents that were known to be relevant were given
a .999 relevance probability, documents known to be
irrelevant were given a .001 probability, documents with
unknown relevance received a probability equal to the
cosine similarity score. We repeated the process twice.

Thus our final submission for each topic used relevance
judgments from 200 documents. The mop-up run
used the same EDLSI parameters and selective query
expansion using all the relevance judgments collected
from all teams.

4 Results

The results released at the TREC conference show that
the EDLSI system is a promising algorithm for use in E-
discovery tasks and the results also allow us to identify
interesting future research paths.

The results from all topics are shown in Tables 4,
5, and 6. These tables show both the estimated and
actual F1 scores over iterations of the machine learning
process for all topics, as well as the estimated amount
of relevant documents across the dataset for that run.
The difference between actual and F1 scores is a nuance
in the TREC scoring system. Hypothetical scores
represent the scores achieved when a cutoff rank of
documents is chosen using information gleaned from a
sample set of approximately 5600 documents per topic.
The scores at this cutoff are ”hypothetical” because
they could be achieved, but only if that sample set of
documents had already been assessed to determine the
optimal cutoff rank. These scores show some unex-
pected fluctuation throughout iterations of the learning
process because the amount of documents estimated
to be relevant throughout the dataset changes over



Figure 3: Ursinus System Estimated Precision per Cutoff across all runs, all topics

time. Actual scores infer an optimal cutoff rank using
the sum of probabilities submitted up to all possible
cutoff ranks (which is also an estimate of how many
documents actually are relevant up to that cutoff),
calculates F1 there, and chooses the rank with the
best F1. These scores are ”actual” because they can
be achieved only using information in the submission.
These results are analyzed in section 4.1.

4.1 Discussion In Table 4 we see that actual F1 sees
increases both rounds of learning, while hypothetical F1
sees a drop from 34.3% to 25.7% before increasing to
44.6% on the mopup run. Given that the estimated
precision for topic 401 showed substantial increases
both rounds of learning (See Fig. 3), estimated recall
must have experienced a drop. Actual F1 does not
see this decrease as the amount of documents known
to be relevant does not change over iterations of the
learning process. Topic 402 also shows the trait of
strictly increasing F1 (see Table 5), while topic 403
shows fluctuation in actual F1 over all runs (see Table
6). The initial drop in hypothetical F1 is present in all
topics. This may be because the estimated count of total
relevant documents increases as runs are submitted.
An increase in the count of relevant documents could

lower the hypothetical F1 score by lowering recall. For
this reason, we closely examine estimated precision over
iterations of the learning process.

Fig. 3 represents the estimated precision metric
at various document cutoffs. Here we see that we
obtained significant improvements on the first round
of machine learning. Further runs proved to have
diminishing returns, especially on topic 403. This may
be due to our query expansion process tending towards
documents that, while similar to the documents known
to be relevant, are not actually relevant to the topic.
The effect being more pronounced on topics 402 and
403 may be related to the nature of topic 401 versus
that of 402 and 403 – topics relevant to 401 contain,
intuitively, more terms that are specific to the topic at
hand than 402 or 403.

The initial query used for topic 401 (See Table 1)
consisted of terms specifically related to Enron’s online
systems. These are terms you would expect to find
only in documents that discuss use and maintenance of
Enron’s online systems, and these terms co-occur with
terms such as: link, search, servers, etc. that are also
likely to be relevant to topic 401. Thus the machine
learning can be expected to be effective.

Unlike topic 401, topics 402 and 403 used terms that
are common throughout the dataset (see Tables 2 and



Figure 4: Graphical Representation of Expansion in the Wrong Direction

3), and this may have caused the machine learning to
not perform as well as on topic 401. It is likely that
terms common to large subsets of the dataset may have
returned documents that trained the machine learning
system away from other relevant documents.

Intuitively, as suggested by the graphic in Fig. 4,
given an initial query with terms that prove to be
good discriminators, we would experience an increase
in recall (especially in early iterations of the learning
process) while precision stays the same or decreases
slightly as the learning process is repeated. However,
a more general initial query (one that has many terms
that are not good discriminators), may return relevant
documents that contain a lot of non-relevant terms
in them. When these documents are used for query
expansion, the non-relevant terms may be given too
much weight. We refer to this process as ”expansion
in the wrong direction.” One of the ways it would be
reflected is in dimishing returns with respect to precision
over iterations of the learning process, as more of the
documents we expect to be relevant actually are not.
This is precisely what we see over multiple runs for
query 403, (see Fig. 3), and we believe this ”expansion
in the wrong direction” actually occurred.

This possibility raises the question: what can be
done to prevent this from happening? One option would
be to use negative relevance feedback (such as that
provided by the topic authority) to negatively weight
the terms that are found in non-relevant documents,
but not in the relevant documents. In this way, the
expansion would be focused on terms that are likely to
be more relevant and which will improve precision and
recall.

5 Conclusions and Future Research

For TREC 2011, we improved our EDLSI system by
increasing the number of dimensions we use in LSI,
and by implementing selective query expansion. EDLSI

was found to be more effective for the topic with the
most specific query terms (topic 401). Selective query
expansion proved most effective on topic 401; the query
expansion results for topics 402 and 403 show little
improvement after the first round of relevance feedback
is incorporated. Opportunities for future work include:

− Continuing k-optimization: The selection of k in
LSI and EDLSI is critical. If k is too low, the LSI
portion of the results will be inaccurate. If k is too
high, computation time increases substantially, and
the latent semantic effect is watered-down. Finding
an optimal k for a dataset is an area of ongoing
research.

− Negative weight analysis: Because we have selective
query expansion working, we can see the positive
effect using a known-relevant document for query
expansion can have on a query. Going in the other
direction, using a known-irrelevant document could
help weed out irrelevant documents that might
otherwise be returned as relevant.

− Topic/Query analysis: Continued analysis of the
characteristics of the topics with less successful re-
sults could lead to a better machine learning pro-
cess; perhaps different algorithms should be used
for different queries. Automatically determining
the best algorithm based on query characteristics
would be particularly useful, both for E-discovery
and for many other retrieval tasks.
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